Measuring DC Motor Parameters - Motor JGA25-370

Motivation

The Plant - Motor JGA25-370

Fig.1 - Motor JGA25-370


Table I - JGA25-370 Datasheet Parameters
Quantity Value Unit Quantity Value Unit
Nominal voltage 12 V Gearbox relation 45:1
No-load speed 188 rmp Nominal speed 131 rpm
No-load current 50 mA Nominal current 240 mA
Encoder relation 11 pulses/turn Nominal torque 1.26 Kgf.cm


Fig.2 - Laboratory Prototype

Dynamic Model of a DC Motor

$$ T_m=k_T\ i_a \ \ (3)$$ $$ e=k_e\ \omega \ \ (4) $$
Fig.3 - DC Motor Scheme
$$ P_m = T_m\ \omega = P_e = e\ i_a \ \ (5) $$ $$ k_T\ i_a\ \omega = k_e\ \omega\ i_a \ \ (6) $$ $$ k_T = k_e = k \ \ (7) $$ $$\frac{\omega\left(s\right)}{V_a\left(s\right)}=\frac{k}{\left(Js+B\right)\left(Ls+R\right)\ +k^2} \ \ (8) $$
Fig.4 - DC Motor Transfer Function Diagram

Electrical Parameters of Armature

Torque and Back-EMF Constants

Table II - Speed and Armature Voltage Measurements
Speed (rps) Speed (rad/s) Armature Voltage (V)
2.07 13.0 7.5
1.82 11.44 6.55
1.52 9.55 5.51
1.26 7.92 4.4
$$ k_e = 0.577 V/(rad/s) \ \ (9) $$ $$ P_m = P - R\ i_a^2 = 1.0676 W \ \ (10) $$ $$ k_T\ =\ \frac{P_m}{\omega \ i_a} = 0.5766 N.m/A\ \ (11) $$

Mechanical Parameters

$$ t_L = - signal(\omega) T_L \ \ (12) $$
Fig.5 - Load Torque Characteristic
$$B\ \omega_1\ +\ T_L\ =\ \frac{P_{m1}}{\omega_1} \ \ (13) $$ $$B\ \omega_2\ +\ T_L\ =\ \frac{P_{m2}}{\omega_2} \ \ (14) $$ $$B\ =\ \frac{\frac{P_{m2}}{\omega_2}\ -\ \frac{P_{m1}}{\omega_1}}{\omega_2\ -\ \omega_1} \ \ (15) $$
Table III - Steady State Tests
Test 1 Test 2
Armature Voltage Va1 7.19 V Armature Voltage Va2 12.1 V
Armature Current Ia1 0.0945 A Armature Current Ia2 0.119 A
Speed ω 1 11.44 rad/s Speed ω 2 19.67 rad/s
Total Electric Power P1 0.6795 W Total Electric Power P2 1.4399 W
Armature Losses PR1 0.0445 W Armature Losses PR2 0.0705 W
Mechanical Power Pm1 0.6350 W Mechanical Power Pm2 1.3694 W
$$ B= 0.00171 N.m/(rad/s) \ \ (16) $$ $$ T_L= 0.03593 N.m \ \ (17) $$
Fig.6 - Deceleration Curves: (a)rps, (b)rad/s
$$J\frac{d\omega}{dt}\ +\ B\ \omega\ =\ -T_L \ \ (17) $$ $$L\left\{\frac{d\omega\left(t\right)}{dt}\right\}\ =\ s\ L\left\{\omega\left(t\right)\right\}\ -\ \omega\left(0\right) \ \ (18) $$ $$J\left[s\ \omega\left(s\right)\ -\ \omega_0\ \right]\ +B\ \omega\left(s\right)\ =\ -\ \frac{T_L}{s} \ \ (19) $$ $$\omega\left(s\right)\ =\ -\frac{T_L}{s\left(Js\ +\ B\right)}\ +\ \frac{J\ \omega_0}{Js\ +\ B} \ \ (20) $$ $$\omega\left(s\right)\ =\ -\frac{T_L}{B\ s}-\frac{J\ T_L}{B\left(Js\ +\ B\right)}\ +\ \frac{J\ \omega_0}{Js\ +\ B} \ \ (21) $$ $$\omega\left(t\right)\ =\ -\ \frac{T_L}{B}\ -\ \frac{T_L}{B}\ e^{-\frac{B}{J}t}\ +\ \omega_0\ e^{-\frac{B}{J}t} \ \ (22) $$ $$f\left(t\right)=a\ e^{-bt}\ \ \ (23) $$ $$f\left(t\right)\ =\ \omega\left(t\right)\ +\ \frac{T_L}{B}\ =\ \left(\frac{T_L}{B}\ +\ \omega_0\right)e^{-\frac{B}{J}t} \ \ (24) $$
Fig.7 - Exponential Regression Result
$$f\left(t\right)\ =\ 36.9215e^{-0.88969\ t} \ \ (25) $$ $$ J=0.0019258\ \ Kg.m^2 \ \ (26) $$
Table IV - System Parameter Summary - All units are in S.I.
Quantity Value Unit
Armature Resistance R 4.98 Ω
Armature Inductance L 3.8 mH
Inertia Moment J 0.0019258 Kg.m2
Friction Coefficient B 0.00171 N.m/(rad/s)
Torque Constant kT 0.5766 N.m/A
Back Electromotive Force Constant ke 0.577 V/(rad/s)

The Plant Scheme

Fig.8 - The Plant Scheme

Quiz

$$ Timer\ Compare\ Value = \frac{Control\ Action}{Vdc}\ \frac{Top}{2}\ +\frac{Top}{2} \ \ (27) $$
Fig.9 - Speed Control Results Using PI Compensator - Simulation and Experimental Comparison (Slow and robust adjustment)
Fig.10 - Speed Control Results Using PI Compensator - Simulation and Experimental Comparison (More agressive adjustment)

Links